Differential regulation of retinoblastoma tumor suppressor protein by G(1) cyclin-dependent kinase complexes in vivo.
نویسندگان
چکیده
The retinoblastoma tumor suppressor protein (pRB) negatively regulates early-G(1) cell cycle progression, in part, by sequestering E2F transcription factors and repressing E2F-responsive genes. Although pRB is phosphorylated on up to 16 cyclin-dependent kinase (Cdk) sites by multiple G(1) cyclin-Cdk complexes, the active form(s) of pRB in vivo remains unknown. pRB is present as an unphosphorylated protein in G(0) quiescent cells and becomes hypophosphorylated (approximately 2 mol of PO(4) to 1 mol of pRB) in early G(1) and hyperphosphorylated (approximately 10 mol of PO(4) to 1 mol of pRB) in late G(1) phase. Here, we report that hypophosphorylated pRB, present in early G(1), represents the biologically active form of pRB in vivo that is assembled with E2Fs and E1A but that both unphosphorylated pRB in G(0) and hyperphosphorylated pRB in late G(1) fail to become assembled with E2Fs and E1A. Furthermore, using transducible dominant-negative TAT fusion proteins that differentially target cyclin D-Cdk4 or cyclin D-Cdk6 (cyclin D-Cdk4/6) and cyclin E-Cdk2 complexes, namely, TAT-p16 and TAT-dominant-negative Cdk2, respectively, we found that, in vivo, cyclin D-Cdk4/6 complexes hypophosphorylate pRB in early G(1) and that cyclin E-Cdk2 complexes inactivate pRB by hyperphosphorylation in late G(1). Moreover, we found that cycling human tumor cells expressing deregulated cyclin D-Cdk4/6 complexes, due to deletion of the p16(INK4a) gene, contained hypophosphorylated pRB that was bound to E2Fs in early G(1) and that E2F-responsive genes, including those for dihydrofolate reductase and cyclin E, were transcriptionally repressed. Thus, we conclude that, physiologically, pRB is differentially regulated by G(1) cyclin-Cdk complexes.
منابع مشابه
Retinoblastoma protein contains a C-terminal motif that targets it for phosphorylation by cyclin-cdk complexes.
Stable association of certain proteins, such as E2F1 and p21, with cyclin-cdk2 complexes is dependent upon a conserved cyclin-cdk2 binding motif that contains the core sequence ZRXL, where Z and X are usually basic. In vitro phosphorylation of the retinoblastoma tumor suppressor protein, pRB, by cyclin A-cdk2 and cyclin E-cdk2 was inhibited by a short peptide spanning the cyclin-cdk2 binding mo...
متن کاملCyclin-dependent kinase inhibition by the KLF6 tumor suppressor protein through interaction with cyclin D1.
Kruppel-like factor 6 (KLF6) is a tumor suppressor gene inactivated in prostate and colon cancers, as well as in astrocytic gliomas. Here, we establish that KLF6 mediates growth inhibition through an interaction with cyclin D1, leading to reduced phosphorylation of the retinoblastoma protein (Rb) at Ser(795). Furthermore, introduction of KLF6 disrupts cyclin D1-cyclin-dependent kinase (cdk) 4 c...
متن کاملThe Role of Tumor Protein 53 Mutations in Common Human Cancers and Targeting the Murine Double Minute 2–P53 Interaction for Cancer Therapy
The gene TP53 (also known as protein 53 or tumor protein 53), encoding transcription factor P53, is mutated or deleted in half of human cancers, demonstrating the crucial role of P53 in tumor suppression. There are reports of nearly 250 independent germ line TP53 mutations in over 100 publications. The P53 protein has the structure of a transcription factor and, is made up of several domains. T...
متن کاملImpact of Ionizing Radiation on the Expression of CDC25A Phosphatase (in vivo)
Background and Objective: The cell division cycle 25 (CDC25)is a familyof highly conserved dual-specificity phosphatases that activate cyclin-dependent kinase complexes. These complexes are the main cell cycle regulators. Mammalian cells ,exposure to DNA damaging radiations such as ionizing radiation and ultraviolet light, prevent cell cycle progression by activation of checkpoint pathways an...
متن کاملDeacetylation of the retinoblastoma tumour suppressor protein by SIRT1.
The activity of Rb (retinoblastoma protein) is regulated by phosphorylation and acetylation events. Active Rb is hypophosphorylated and acetylated on multiple residues. Inactivation of Rb involves concerted hyper-phosphorylation by cyclin-CDK (cyclin-dependent kinase) complexes combined with deacetylation of appropriate lysine residues within Rb. In the present study, using in vivo co-immunopre...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular and cellular biology
دوره 21 14 شماره
صفحات -
تاریخ انتشار 2001